Topics in Graph Construction for Semi-Supervised Learning
نویسنده
چکیده
Graph-based Semi-Supervised Learning (SSL) methods have had empirical success in a variety of domains, ranging from natural language processing to bioinformatics. Such methods consist of two phases. In the first phase, a graph is constructed from the available data; in the second phase labels are inferred for unlabeled nodes in the constructed graph. While many algorithms have been developed for label inference, thus far little attention has been paid to the crucial graph construction phase and only recently has the importance of the graph construction for the resulting success in label inference been recognized. In this report, we shall review some of the recently proposed graph construction methods for graph-based SSL. We shall also present suggestions for future research in this area. Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MSCIS-09-13. This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/936 Topics in Graph Construction for Semi-Supervised Learning Partha Pratim Talukdar University of Pennsylvania [email protected]
منابع مشابه
A Graph-Based Semi-Supervised Learning for Question Semantic Labeling
We investigate a graph-based semi-supervised learning approach for labeling semantic components of questions such as topic, focus, event, etc., for question understanding task. We focus on graph construction to handle learning with dense/sparse graphs and present Relaxed Linear Neighborhoods method, in which each node is linearly constructed from varying sizes of its neighbors based on the dens...
متن کاملSupervised neighborhood graph construction for semi-supervised classification
Graph based methods are among the most active and applicable approaches studied in semi-supervised learning. The problem of neighborhood graph construction for these methods is addressed in this paper. Neighborhood graph construction plays a key role in the quality of the classification in graph based methods. Several unsupervised graph construction methods have been proposed that have addresse...
متن کاملData-Driven Graph Construction for Semi-Supervised Graph-Based Learning in NLP
Graph-based semi-supervised learning has recently emerged as a promising approach to data-sparse learning problems in natural language processing. All graph-based algorithms rely on a graph that jointly represents labeled and unlabeled data points. The problem of how to best construct this graph remains largely unsolved. In this paper we introduce a data-driven method that optimizes the represe...
متن کاملOntology Similarity Measuring and Ontology Mapping Algorithms Via Graph Semi-Supervised Learning
Ontology similarity calculation is important research topics in information retrieval and widely used in biology and chemical. By analyzing the technology of semi-supervised learning, we propose the new algorithm for ontology similarity measure and ontology mapping. The ontology function is obtained by learning the ontology sample data which is consisting of labeled and unlabeled ontology data....
متن کاملSemi-supervised Learning for Convolutional Neural Networks via Online Graph Construction
The recent promising achievements of deep learning rely on the large amount of labeled data. Considering the abundance of data on the web, most of them do not have labels at all. Therefore, it is important to improve generalization performance using unlabeled data on supervised tasks with few labeled instances. In this work, we revisit graph-based semi-supervised learning algorithms and propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009